人才培养
柏文

柏文,副研究员,硕士生导师,九三学社社员。主要从事工程振动智能控制等技术研究。主持国家自然科学基金、省部级重点研发课题等各类科研项目10余项,参与40余项,发表学术论文100余篇,获授权发明专利20余项,参与编写规范2项,担任《Earthquake Spectra》、《Engineering Structures》、《Journal of Building Engineering》、《Journal of Earthquake Engineering》、《Earthquake Engineering and Engineering Vibration》、《Structures》、《中国电机工程学报》、《振动与冲击》、《工程力学》等数十本期刊审稿人,荣获中国地震局嘉奖和防震减灾科学成果奖等。


联系方式

电话:18646238361

邮箱:baiwen@iem.ac.cn

地址:黑龙江省哈尔滨市南岗区学府路29号


教育经历

[1] 2007.09-2011.07

中南大学,学士学位

[2] 2012.09-2014.07

中国地震局工程力学研究所,硕士学位(导师:戴君武研究员)

[3] 2014.09-2018.07

中国地震局工程力学研究所,博士学位(导师:戴君武研究员)

[4] 2016.10-2017.10

University of Nevada, Reno,国家公派联合培养博士生(导师:Ian G. Buckle教授)


工作经历

[1] 2018.07-2018.12

中国地震局工程力学研究所,研究实习员

[2] 2018.12-2021.04

中国地震局工程力学研究所,助理研究员

[3] 2021.04-2021.09

中国地震局工程力学研究所,副研究员

[4] 2021.09至今

中国地震局工程力学研究所,副研究员、硕士生导师


主要研究方向

[1] 工程振动智能控制

[2] 结构隔震技术研究

[3] 电力设施及系统抗震韧性研究

[4] 古建及文物地震保护研究

[5] 非结构构件抗震性能及设计谱研究

[6] 冰雪结构安全保障


代表性科研项目

[1] 国家自然科学基金面上基金:基于环形叠层橡胶的压剪型装置震振双控机理及设计方法研究,2024.01-2027.12,主持

[2] 应急管理部重点研发课题:城市建筑震振双控关键装置及其安全监测评估关键技术研究,2024.10-2026.9,主持

[3] 中央级公益性科研院所基本科研业务费:兼顾地震与轨交振动控制需求的建筑震振双控装置研发,2024.09-2026.12,主持

[4] 省级重点研发专题:考虑近场大脉冲及上下盘效应、远场长周期长持时地震作用的大跨度桥梁动力灾变损伤机理研究,2024.01-2026.12,主持

[5] 中央级公益性科研院所基本科研业务费人才专项:建筑结构震振复合控制关键技术研究,2023.12-2026.12,主持

[6] 省级重点研发专题:建筑震振双控实用装置及设计方法研究,2022.12-2025.11,主持

[7] 国家自然科学基金青年基金:合建式变电站设备隔震与隔振一体化控制关键技术研究,2021.01-2023.12,主持

[8] 中央级公益性科研院所基本科研业务费专题项目:隔震结构抗震韧性评价研究及其标准化,2021.01-2023.01,主持

[9] 国家重点研发国际合作项目课题:非结构构件抗震性能评估三维楼面反应谱研究,2020.12-2023.11,主持

[10] 中央级公益性科研院所基本科研业务费面上项目:母线互连瓷柱型电气设备系统地震易损性研究,2019.09-2022.08,主持

[11] 黑龙江省自然科学基金联合引导项目:瓷柱型电气设备多条件耦合地震易损性及减震研究,2019.07-2022.07,主持

[12] 国家重点研发项目专题:倒塌建筑物生命通道优选标准化,2018.12-2021.12,主持

[13] 国家自然科学基金面上基金:基于抗震韧性的建筑非结构部件楼层设计反应谱研究,2021.01-2024.12,参与

[14] 国家自然科学基金面上基金:近断层区域内相邻框架结构抗震韧性提升技术研究,2021.01-2024.12,参与

[15] 国家自然科学基金面上基金:大跨空间结构吊顶非结构系统地震失效机理及抗震风险评估研究,2016.01-2019.12,参与

[16] 国家自然科学基金面上基金:瓷柱型高耸电气设备多重环式调谐质量阻尼减震技术研究,2015.01-2018.12,参与

[17] 国家自然科学基金青年基金:空间网格结构强震损伤演化机理和抗震性能评估关键问题研究,2014.01-2016.12,参与


代表性论著

[1] Bai W, Shao Z, Dai J, et al. Earthquake damage reconnaissance and numerical analysis of a middle school teaching building after the Ms 6.0 Changning earthquake[J]. Engineering Failure Analysis, 2025, 169: 109201.

[2] Bai W, Zhu W, Moustafa M A, et al. Seismic mitigation of porcelain cylindrical electrical equipment using synergistic concept with base isolation and tuned mass damper[J]. Earthquake Spectra, 2025, 41(1): 654-681.

[3] Shao Z, Bai W*, Dai J, et al. Measurement and analysis of vibration responses due to subway transit in residential areas[J]. Structures. 2024, 69: 107305.

[4] Shao Z, Bai W*, Dai J, et al. Research on compressive behavior of thick rubber bearings for mitigating train-induced structural vibration[J]. Engineering Structures, 2024, 315: 118444.

[5] Huang S, Yu D, Bai W, et al. Experimental and numerical analysis of seismic performance of jacket platforms subjected to onshore and offshore earthquakes[J]. Engineering Structures, 2024, 311: 118177.

[6] Bai W, Dai J, Liu R, et al. Site investigation on seismic performance of 7 isolated buildings during the 2022 Luding Ms 6.8 earthquake[J]. Journal of Building Engineering, 2024, 89: 109224.

[7] Shao Z, Bai W*, Dai J, et al. Research on the effectiveness of a new-type bearing for structural seismic and vibration dual control[J]. Structures. 2024, 62: 106188.

[8] Pang, H., Jiang, T., Dai, J., Yang, Y., & Bai, W. Experimental Study of the Mechanical Properties of Full-Scale Rubber Bearings at 23° C, 0° C, and− 20° C[J]. Polymers, 2024, 16(7): 903.

[9] Hu Y, Bai W*, Dai J, et al. Fragility Analysis of the Main Building–Coal Conveyor Trestle Interaction System of a Thermal Power Plant[J]. Buildings, 2023, 13(11): 2864.

[10] Shao Z, Bai W*, Dai J, et al. Monitoring and analysis of railway-induced vibration and structure-borne noise in a transit-oriented development project[J]. Structures, 2023, 57: 105097.

[11] Wu B, Dai J, Bai W*, et al. Triaxial elastoplastic damage constitutive model of unreinforced clay brick masonry wall[J]. Earthquake Engineering and Engineering Vibration, 2023, 22(1): 157-172.

[12] Zhao C, Chen C, Zeng C, Bai W*, et al. Novel periodic pile barrier with low-frequency wide bandgap for Rayleigh waves[J]. International Journal of Mechanical Sciences, 2023, 243: 108006.

[13] Wang W, Nie G, Bai W*, et al. Study on the strong earthquake failure mechanism of space grid structure considering rotational ground motion[J]. Structures, 2023, 57: 105140.

[14] Zhang Z, Jiang S*, Bai W*, et al. Seismic performance assessment of bolted prefabricated shear walls considering bolt-slip[J]. Journal of Building Engineering, 2023, 79: 107923.

[15] Wu B, Dai J, Jin H, Bai W, et al. Numerical simulation on the seismic performance of retrofitted masonry walls based on the combined finite-discrete element method[J]. Earthquake Engineering and Engineering Vibration, 2023, 22(3): 777-805.

[16] Jiang T, Dai J, Yang Y, Bai W*, et al. Finite element analysis of an all-steel buckling-restrained brace[J]. Earthquake Engineering and Engineering Vibration, 2022, 21(4): 1119-1135.

[17] Du K, Ding B, Bai W, et al. Quantifying uncertainties in ground motion-macroseismic intensity conversion equations. A probabilistic relationship for western China[J]. Journal of Earthquake Engineering, 2022, 26(4): 1976-2000.

[18] Cheng X, Xu X, Bai W*, et al. A calculation model for vibration effect induced by resonance-free vibratory hammer method[J]. Buildings, 2022, 12(12): 2204.

[19] Tang B, Dong Y, Bai W*, et al. Seismic Response of Star-Type Grid Concrete Wall Structure by Numerical Modeling[J]. Materials, 2022, 15(23): 8519.

[20] Zhang G, Sun B, Bai W, et al. Prediction of the yield performance and failure mode of RC columns under cyclic-load by PSO-BP neural network[J]. Buildings, 2022, 12(5): 507.

[21] Bai W, Li Y, Ji J, et al. Axial compression behavior of symmetrical full-scale concrete filled double skin steel tube stub columns[J]. Symmetry, 2022, 14(2): 223.

[22] Bai W, Moustafa M A, Dai J, et al. Damage assessment of Shuanghe Confucian temple after Changning earthquake mainshock and aftershocks series[J]. Bulletin of Earthquake Engineering, 2021, 19(14): 5977-6001.

[23] Xu L, Li Z, Bai W*, et al. Numerical simulation platform for slab track systems subjected to a moving vehicle[J]. Advances in Engineering Software, 2021, 154: 102984.

[24] Ji J, Zeng W, Jiang L, Bai W, et al. Hysteretic behavior on asymmetrical composite joints with concrete-filled steel tube columns and unequal high steel beams[J]. Symmetry, 2021, 13(12): 2381.

[25] Du K, Bai W, Bai J, et al. Comparative seismic performance assessment of reinforced concrete frame structures with and without structural enhancements using the FEMA P-58 methodology[J]. ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 2021, 7(4): 04021047.

[26] Zhao, C., Zeng, C., Huang, H., Dai, J., Bai, W., Wang, J., & Mo, Y. L. Preliminary study on the periodic base isolation effectiveness and experimental validation[J]. Engineering Structures, 2021, 226: 111364.

[27] Bai W, Xu L. Theoretical studies on the longitudinal inhomogeneity of track stiffness and a track status estimation method[J]. Advances in Civil Engineering, 2021, 2021(1): 8847633.

[28] Jiang, T., Dai, J., Yang, Y., Liu, Y., & Bai, W. Study of a new-type of steel buckling-restrained brace[J]. Earthquake Engineering and Engineering Vibration, 2020, 19: 239-256.

[29] Bai W, Junwu D. Seismic Protection of Cultural Relics Using Three-Dimensional Base-Isolation System[M]//Experimental Vibration Analysis for Civil Structures. CRC Press, 2020: 27-32.

[30] Bai W, Mohamed A. Moustafa; Dai Junwu; Seismic Fragilities of High-Voltage Substation Disconnect Switches, Earthquake Spectra, 2019, 35(4): 1559-1582.

[31] Dai J, Yang Y, Bai W. Shaking table test for the 1: 5 architectural model of Qin-an Palace with wooden frame structure in the Forbidden City[J]. International Journal of Architectural Heritage, 2019, 13(1): 128-139.

[32] Shi B, Dai J, Bai W, et al. Investigation on the building structural damages of the Kathmandu nine-story Basantapur Tower in 2015 Nepal M8. 1 Gorkha earthquake[J]. International Journal of Architectural Heritage, 2019, 13(1): 76-97.

[33] Bai W, Mohamed A. Moustafa; Dai Junwu; Seismic response of potential transformers and mitigation using innovative multiple tuned mass dampers[J], Engineering Structures, 2018, 174: 67-80.

[34] Bai W, Dai Junwu, et al. Experimental and analytical studies on multiple tuned mass dampers for seismic protection of porcelain electrical equipment[J], Earthquake Engineering and Engineering Vibration, 2017, 2017(16): 803-813.

[35] 赵守江,柏文*,戴君武.曲线轨道式隔震装置的结构优化与应用研究[J].中南大学学报(自然科学版),2024,55(01):355-364.

[36] 刘荣恒,柏文*,戴君武,等.基于强震记录的建筑结构楼层设计谱研究[J].工程力学,2024,41(12):176-188.

[37] 庞辉,姜涛,戴君武,杨永强,柏文.考虑环境温度效应的隔震橡胶支座力学性能试验[J].哈尔滨工业大学学报,2024,56(06):91-103.

[38] 赵守江,柏文*.具有黏滞阻尼机构的曲线轨道式隔震装置试验与数值分析[J/OL].振动工程学报,1-9.

[39] 赵守江,柏文*.组合型摩擦摆隔震装置的设计与试验研究[J/OL].工程力学,1-8.

[40] 赵春风,王胤植,楚凡,柏文.十字形梯度地震超材料带隙特性与隔震性能研究[J/OL].工程力学,1-14

[41] 杜思敏,柏文*,戴君武,等.典型220 kV电容式电压互感器地震易损性研究[J].地震工程与工程振动,2023,43(01):189-196.

[42] 戴君武,柏文*,周宝峰,等.从泸定6.8级地震看建筑隔震技术发展亟待解决的问题[J].地震工程与工程振动,2022,42(06):1-11.

[43] 柏文,唐柏赞,戴君武,杜轲,杨永强.考虑地震和材料强度不确定性的瓷柱型电气设备易损性分析[J].中国电机工程学报(中国最具国际影响力中文期刊),2021,41(07):2594-2605.

[44] 柏文,戴君武,杨永强.瓷柱型电气设备基于BI-TMD的混合控制减震研究[J].中国电机工程学报(中国最具国际影响力中文期刊),2019,39(13):3939-3947.

[45] 柏文, 戴君武, 宁晓晴, 周惠蒙, 杨永强. 考虑地震作用的互联高压电气设备软母线松弛度研究[J], 中国电机工程学报(中国最具国际影响力中文期刊), 2018, 38(3): 927-936.

[46] 柏文, 戴君武, 周惠蒙, 杨永强, 宁晓晴. 瓷柱型电气设备MTMD减震方法试验研究[J], 高电压技术(中国国际影响力优秀学术期刊), 2018, 44(3): 1-8.


代表性发明专利

[1] 柏文、戴君武、杨永强,带竖向重力调谐单元的摩擦摆隔震装置

[2] 柏文、戴君武、杨永强,宽频稳定的多重调谐质量阻尼器机械减振支座

[3] 柏文、戴君武、杨永强,一种带质量稳定器的水平单向隔振装置

[4] 柏文、戴君武、杨永强,用于浮放物抗震保护的摆式三维隔震展柜

[5] 柏文、戴君武、杨永强,用于文物保护的三维隔震装置

[6] 柏文、戴君武、杨永强,带多重调谐质量阻尼器的稳定隔震装置

[7] 柏文、戴君武等,用于瓷柱型电气设备抗震保护的抗拔小位移机械隔震装置

[8] 柏文、戴君武等,带竖向调谐质量的电气设备抗拔隔震装置

[9] 柏文、戴君武等,三维全向剪切型震振双控装置

[10] 柏文、戴君武等,一种三维隔震支座


代表性奖项及荣誉

[1] 2023,中国地震局,嘉奖

[2] 2021,中国地震局防震减灾科学成果奖,二等奖,排名第4

[3]2017,刘恢先地震工程奖学金